Can a single-reference approach provide a balanced description of ground and excited states? A comparison of the completely renormalized equation-of-motion coupled-cluster method with multireference quasidegenerate perturbation theory near a conical intersection and along a photodissociation coordinate in ammonia.
نویسندگان
چکیده
We calculated the two lowest electronically adiabatic potential energy surfaces of ammonia in the region of the conical intersection and at a sequence of geometries along which one of the N-H bonds is broken. We employed both a multireference (MR) method and a single-reference (SR) method. The MR calculations are based on multiconfiguration quasidegenerate perturbation theory (MC-QDPT) with a 6-311+G(3df,3pd) basis set. The SR calculations, carried out with the same basis, employ the completely renormalized equation-of-motion coupled-cluster method with singles and doubles, and a noniterative treatment of triples, denoted CR-EOMCCSD(T). At 91 geometries used for comparison, including geometries near a conical intersection, the surfaces agree to 7% on average.
منابع مشابه
The X, B, and B′ states of C2: A comparison of renormalized coupled- cluster and multireference methods with full configuration interaction benchmarks
Unusual bonding and electronic near degeneracies make the lowest-lying singlet states of the C 2 molecule particularly challenging for electronic structure theory. Here we compare two alternative approaches to modeling bond-breaking reactions and excited states: sophisticated multireference configuration interaction and multireference perturbation theory methods, and a more " black box, " singl...
متن کاملThe X 1 S g + , B 1 D g , and B 8 1 S g + states of C 2 : A comparison of renormalized coupled - cluster and multireference methods with full configuration interaction benchmarks
Unusual bonding and electronic near degeneracies make the lowest-lying singlet states of the C2 molecule particularly challenging for electronic structure theory. Here we compare two alternative approaches to modeling bond-breaking reactions and excited states: sophisticated multireference configuration interaction and multireference perturbation theory methods, and a more “black box,” single-r...
متن کاملConical Intersection and Potential Energy Surface Features of a Model Retinal Chromophore: Comparison of EOM-CC and Multireference Methods.
This work investigates the performance of equation-of-motion coupled-cluster (EOM-CC) methods for describing the changes in the potential energy surfaces of the penta-2,4-dieniminium cation, a reduced model of the retinal chromophore of visual pigments, due to dynamical electron correlation effects. The ground-state wave function of this model includes charge-transfer and diradical configuratio...
متن کاملDirect calculation of coupled diabatic potential-energy surfaces for ammonia and mapping of a four-dimensional conical intersection seam.
We used multiconfiguration quasidegenerate perturbation theory and the fourfold-way direct diabatization scheme to calculate ab initio potential-energy surfaces at 3600 nuclear geometries of NH3. The calculations yield the adiabatic and diabatic potential-energy surfaces for the ground and first electronically excited singlet states and also the diabatic coupling surfaces. The diabatic surfaces...
متن کاملShape of Multireference, Equation-of-Motion Coupled-Cluster, and Density Functional Theory Potential Energy Surfaces at a Conical Intersection.
We report and characterize ground-state and excited-state potential energy profiles using a variety of electronic structure methods along a loop lying on the branching plane associated with a conical intersection (CI) of a reduced retinal model, the penta-2,4-dieniminium cation (PSB3). Whereas the performance of the equation-of-motion coupled-cluster, density functional theory, and multireferen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. A
دوره 109 51 شماره
صفحات -
تاریخ انتشار 2005